Nguyễn Quốc Ý
AIP Conference Proceedings 2502, 2022
https://doi.org/10.1063/5.0108718
Abstract: Thermal insulation of walls is important in green or energy-efficient buildings. To increase the thermal resistance of walls, solar chimney can be used, as it helps to release solar heat gain on the wall. In previous studies on wall solar chimneys in the literature, simulations with the Computational Fluid Dynamics (CFD) are among the common methods. One of the influencing factors of the reliability of the CFD simulations is the size of the domain size. In this work, we tested effects of the dimensions of the computational domain on the air flow rate through and Nusselt number of a wall solar chimney with a CFD model. Two types of the domain were considered. The small one included only the cavity of the air channel while the large one was extended from the small one to cover ambient air. The results show that to achieve solutions with less than 1.0% change with the domain, the extension should be more than 3.0G above the top and to the side, and 1.5G below the bottom inlet of the air channel of the solar chimney. The findings in this study offer a good reference for determining the computational domain for wall solar chimneys.